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Abstract

This paper studies the problem of semi-supervised learning from the vector field
perspective. Many of the existing work use the graph Laplacian to ensure the
smoothness of the prediction function on the data manifold. However, beyond
smoothness, it is suggested by recent theoretical work that we should ensure
second order smoothness for achieving faster rates of convergence for semi-
supervised regression problems. To achieve this goal, we show that the second
order smoothness measures the linearity of the function, and the gradient field of
a linear function has to be a parallel vector field. Consequently, we propose to
find a function which minimizes the empirical error, and simultaneously requires
its gradient field to be as parallel as possible. We give a continuous objective
function on the manifold and discuss how to discretize it by using random points.
The discretized optimization problem turns out to be a sparse linear system which
can be solved very efficiently. The experimental results have demonstrated the
effectiveness of our proposed approach.

1 Introduction

In many machine learning problems, one is often confronted with very high dimensional data. There
is a strong intuition that the data may have a lower dimensional intrinsic representation. Various
researchers have considered the case when the data is sampled from a submanifold embedded in
the ambient Euclidean space. Consequently, learning with the low dimensional manifold structure,
or specifically the intrinsic topological and geometrical properties of the data manifold, becomes a
crucial problem.

In the past decade, many geometrically motivated approaches have been developed. The early work
mainly considers the problem of dimensionality reduction. One hopes that the manifold structure
could be preserved in the much lower dimensional Euclidean space. For example, ISOMAP [1] is
a global approach which tries to preserve the pairwise geodesic distance on the manifold. Different
from ISOMAP, Hessian Eigenmaps (HLLE, [2]) is a local approach for similar purpose. Locally
Linear Embedding (LLE, [3]) and Laplacian Eigenmaps (LE, [4]) can be viewed as Laplacian oper-
ator based methods which mainly consider the local neighborhood structure of the manifold.

Besides dimensionality reduction, Laplacian based regularization has also been widely employed
in semi-supervised learning. These methods construct a nearest neighbor graph over the labeled
and unlabeled data to model the underlying manifold structure, and use the graph Laplacian [5]
to measure the smoothness of the learned function on the manifold. A variety of semi-supervised
learning approaches using the graph Laplacian have been proposed [6, 7, 8]. In semi-supervised
regression, some recent theoretical analysis [9] shows that using the graph Laplacian regularizer
does not lead to faster minimax rates of convergence. [9] also states that the Laplacian regularizer
is way too general for measuring the smoothness of the function. It is further suggested that we

1



should ensure second order smoothness to achieve faster rates of convergence for semi-supervised
regression problems. The Laplacian regularizer is the integral on the norm of the gradient of the
function, which is the first order derivative on the function.

In this paper, we design regularization terms that penalize the second order smoothness of the func-
tion, i.e., the linearity of the function. Estimating the second order covariant derivative of the func-
tion is a very challenging problem. We try to address this problem from vector fields perspective.
We show that the gradient field of a linear function has to be a parallel vector field (or parallel field
in short). Consequently, we propose a novel approach called Parallel Field Regularization (PFR)
to simultaneously find the function and its gradient field, while requiring the gradient field to be as
parallel as possible. Specifically, we propose to compute a function and a vector field which satisfy
three conditions simultaneously: 1) the function minimizes the empirical error on the labeled data,
2) the vector field is close to the gradient field of the function, 3) the vector field should be as par-
allel as possible. A novel regularization framework from the vector filed perspective is developed.
We give both the continuous and discrete forms of the objective function, and develop an efficient
optimization scheme to solve this problem.

2 Regularization on the Vector Field

We first briefly introduce semi-supervised learning methods with regularization on the function.
LetM be a d-dimensional submanifold in Rm. Given l labeled data points (xi, yi)li=1 onM, we
aim to learn a function f :M→ R based on the manifoldM and the labeled points (xi, yi)li=1. A
framework of semi-supervised learning based on differential operators can be formulated as follows:

arg min
f∈C∞(M)

E(f) =
1

l

l∑
i=1

R0(f(xi), yi) + λ1R1(f)

where C∞(M) denotes smooth functions onM, R0 : R×R→ R is the loss function and R1(f) :
C∞(M) → R is a regularization functional. R1 is often written as a functional norm associated
with a differential operator, i.e., R1(f) =

∫
M ‖Df‖

2 where D is a differential operator. If D is
the covariant derivative ∇ on the manifold, then R1(f) =

∫
M ‖∇f‖

2 =
∫
M fL(f) becomes the

Laplacian regularizer. If D is the Hessian operator on the manifold, then R1(f) =
∫
M ‖Hessf‖2

becomes the Hessian regularizer.

2.1 Parallel Fields and Linear Functions

We first show the relationship between a parallel field and a linear function on the manifold.
Definition 2.1 (Parallel Field [10]). A vector field X on manifoldM is a parallel field if

∇X ≡ 0,

where∇ is the covariant derivative onM.
Definition 2.2 (Linear Function [10]). A continuous function f :M→ R is said to be linear if

(f ◦ γ)(t) = f(γ(0)) + ct (1)

for each geodesic γ.

A function f is linear means that it varies linearly along the geodesics of the manifold. It is a natural
extension of linear functions on Euclidean space.
Proposition 2.1. [10] Let V be a parallel field on the manifold. If it is also a gradient field for
function f , V = ∇f , then f is a linear function on the manifold.

This proposition tells us the relationship between a parallel field and a linear function on the mani-
fold.

2.2 Objective Function

We aim to design regularization terms that penalize the second order smoothness of the function.
Following the above analysis, we first approximate gradient field of the prediction function by a
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Figure 1: Covariant derivative demonstration. Let
V, Y be two vector fields on manifoldM. Given
a point x ∈ M, we show how to compute the
vector ∇Y V |x. Let γ(t) be a curve on M:
γ : I → M which satisfies γ(0) = x and
γ′(0) = Yx. Then the covariant derivative along
the direction dγ(t)

dt |t=0 can be computed by pro-
jecting dV

dt |t=0 to the tangent space TxM at x.
In other words, ∇γ′(0)V |x = Px(

dV
dt |t=0), where

Px : v ∈ Rm → Px(v) ∈ TxM is the projection
matrix. It is not difficult to check that the compu-
tation of ∇Y V |x is independent to the choice of
the curve γ.

vector field, then we require the vector field to be as parallel as possible. Therefore, we try to learn
the function f and its gradient field ∇f simultaneously. Formally, we propose to learn a function f
and a vector field V on the manifold with two constraints:

• The vector field V should be close to the gradient field∇f of f , which can be formularized
as follows:

min
f∈C∞,V

R1(f, V ) =

∫
M
‖∇f − V ‖2 (2)

• The vector field V should be as parallel as possible:

min
V

R2(V ) =

∫
M
‖∇V ‖2F (3)

where ∇ is the covariant derivative on the manifold, ‖ · ‖F denotes the Frobenius norm.

In the following, we provide some detailed explanation of R2(V ). ∇V measures the change of the
vector field V . If ∇V vanishes, then V is a parallel field. For a given direction Yx at x ∈ M, the
geometrical meaning of ∇Y V |x is demonstrated in Fig. 1. For a fixed point x ∈ M, ∇V |x is a
linear map on the tangent space TxM. According to the definition of Frobenius norm, we have

‖∇V ‖2F =

d∑
i,j=1

(g(∇∂iV, ∂j))2 =

d∑
i=1

(g(∇∂iV,∇∂iV )) (4)

where g is the Riemannian metric onM and ∂1, . . . , ∂d is an orthonormal basis of TxM.

Naturally, we propose the following objective function based on vector field regularization:

arg min
f∈C∞(M),V

E(f, V ) =
1

l

l∑
i=1

R0(xi, yi, f) + λ1R1(f, V ) + λ2R2(V ) (5)

For the loss function R0, we use the squared loss R0(f(xi), yi) = (f(xi)− yi)2 for simplicity.

3 Implementation

Since the manifoldM is unknown, the function f which minimizes (5) can not be directly solved.
In this section, we discuss how to discretize the continuous objective function (5).

3.1 Vector Field Representation

Given l labeled data points (xi, yi)
l
i=1 and n − l unlabeled points xl+1, . . . , xn in Rm. Let fi =

f(xi), i = 1, . . . , n, our goal is to learn a function f = (f1, . . . , fn)
T . We first construct a nearest

neighbor graph by either ε-neighborhood or k nearest neighbors. Let xi ∼ xj denote that xi and
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xj are neighbors. For each point xi, we estimate its tangent space Txi
M by performing PCA on its

neighborhood. We choose the largest d eigenvectors as the bases since Txi
M is d dimensional. Let

Ti ∈ Rm×d be the matrix whose columns constitute an orthonormal basis for Txi
M. It is easy to

show that Pi = TiT
T
i is the unique orthogonal projection from Rm onto the tangent space Txi

M
[11]. That is, for any vector a ∈ Rm, we have Pia ∈ Txi

M and (a− Pia) ⊥ Pia.

Let V be a vector field on the manifold. For each point xi, let Vxi
denote the value of the vector field

V at xi, and ∇V |xi
denote the value of ∇V at xi. According to the definition of vector field, Vxi

should be a vector in tangent space Txi
M. Therefore, it can be represented by the local coordinates

of the tangent space, Vxi
= Tivi, where vi ∈ Rd. We define V =

(
vT1 , . . . , v

T
n

)T ∈ Rdn. That is,
V is a dn-dimensional big column vector which concatenates all the vi’s. In the following, we first
discretize our objective function E(f, V ), and then minimize it to obtain f and V.

3.2 Gradient Field Computation

In order to discretize R1(f, V ), we first discuss the Taylor expansion of f on the manifold. Let expx
denote the exponential map at x. The exponential map expx : TxM→M maps the tangent space
TxM to the manifoldM. Let a ∈ TxM be a tangent vector. Then there is a unique geodesic γa
satisfying γa(0) = x with the initial tangent vector γ′a(0) = a. The corresponding exponential map
is defined as expx(ta) = γa(t), t ∈ [0, 1]. Locally, the exponential map is a diffeomorphism.

Note that f ◦expx : TxM→ R is a smooth function on TxM. Then the following Taylor expansion
of f holds:

f(expx(a)) ≈ f(x) + 〈∇f(x), a〉, (6)
where a ∈ TxM is a sufficiently small tangent vector. In the discrete case, let expxi

denote the
exponential map at xi. Since expxi

is a diffeomorphism, there exists a tangent vector aij ∈ Txi
M

such that expxi
(aij) = xj . According to the definition of exponential map, ‖aij‖ equals to the

geodesic distance between xi and xj , which can be denoted as dij . Let eij be the unit vector in the
direction of aij , i.e., eij = aij/dij . We approximate aij by projecting the vector xj − xi to the
tangent space, i.e., aij = Pi(xj − xi). Therefore, Eq. (6) can be rewritten as follows:

f(xj) = f(xi) + 〈∇f(xi), Pi(xj − xi)〉 (7)

Since f is unknown,∇f is also unknown. In the following, we discuss how to compute ‖∇f(xi)−
Vxi
‖2 discretely. We first show that the vector norm can be computed by an integral on a unit sphere,

where the unit sphere can be discretely approximated by a neighborhood.

Let u be a unit vector on tangent space TxM, then we have (see the exercise 1.12 in [12])
1

ωd

∫
Sd−1

〈X,u〉2dδ(X) = 1 (8)

where Sd−1 is the unit (d − 1)-sphere, dωd is its volume, and dδ is its volume form. Let ∂i,
i = 1, . . . , d, be an orthonormal basis of TxM. Then for any vector b ∈ TxM, it can be written as
b =

∑d
i=1 b

i∂i. Furthermore, we have

‖b‖2 =

d∑
i=1

(bi)2 =

d∑
i=1

(bi)2
1

ωd

∫
Sd−1

〈X, ∂i〉2dδ(X) =
1

ωd

∫
Sd−1

〈X, b〉2dδ(X)

From Eq. (7), we can see that
〈∇f(xi), Pi(xj − xi)〉 = f(xj)− f(xi).

Thus, we have

‖∇f(xi)− Vxi
‖2 =

1

ωd

∫
Sd−1

〈X,∇f(xi)− Vxi
〉2dδ(X)

≈
∑
j∼i
〈eij ,∇f(xi)− Vxi

〉2 =
∑
j∼i

wij〈aij ,∇f(xi)− Vxi
〉2

=
∑
j∼i

wij〈Pi(xj − xi),∇f(xi)− Vxi
〉2

=
∑
j∼i

wij
(
(Pi(xj − xi))TVxi

− f(xj) + f(xi)
)2
.

(9)
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where wij = d−2ij . The weight wij can be approximated either by heat kernel weight exp(−‖xi −
xj‖2/δ) or simply by 0− 1 weight. Then R1 reduces to the following:

R1(f,V) =
∑
i

∑
j∼i

wij
(
(xj − xi)TTivi − fj + fi

)2
(10)

3.3 Parallel Field Computation

As discussed before, we hope the vector field to be as parallel as possible on the manifold. In the
discrete case, R2 becomes

R2(V) =
n∑
i=1

‖∇V |xi‖2F (11)

In the following, we discuss how to approximate ‖∇V |xi
‖2F for a given point xi. Since we do

not know ∇∂iV for a given basis ∂i, ‖∇V |xi
‖2F cannot be computed according to Eq. (4). We

define a (0, 2) symmetric tensor α as α(X,Y ) = g(∇XV,∇Y V ), where X and Y are vector fields
on the manifold. We have Trace(α) =

∑d
i=1 g(∇∂iV,∇∂iV ) = ‖∇V ‖2F , where ∂1, . . . , ∂d is

an orthonormal basis of the tangent space. For the trace of α, we have the following geometric
interpretation (see the exercise 1.12 in [12]):

Trace(α) =
1

ωd

∫
Sd−1

α(X,X)dδ(X) (12)

where Sd−1 is the unit (d− 1)-sphere, dωd its volume, and dδ its volume form. So for a given point
xi, we can approximate ‖∇V |xi

‖ by the following

‖∇V |xi
‖2F = Trace(α)xi

=
1

ωd

∫
Sd−1

α(X,X)|xi
dδ(X) ≈

∑
j∼i

α(eij , eij) =
∑
j∼i
‖∇eijV ‖2

(13)

Then we discuss how to discretize ∇eijV . Given eij ∈ Txi
M, there exists a unique geodesic γ(t)

which satisfies γ(0) = xi and γ′(0) = eij . Then the covariant derivative of vector field V along eij
is given by (please see Fig. 1)

∇eijV = Pi

(
dV

dt
|t=0

)
= Pi lim

t→0

V (γ(t))− V (γ(0))

t
≈ Pi

(Vxj
− Vxi

)

dij
=
√
wij(PiVxj − Vxi)

Combining Eq. (13), R2 becomes:

R2(V) =
∑
i

∑
j∼i

wij ‖PiTjvj − Tivi‖2 (14)

3.4 Objective Function in the Discrete Form

Let I denote a n × n diagonal matrix where Iii = 1 if xi is labeled and Iii = 0 otherwise. And let
y ∈ Rn be a column vector whose i-th element is yi if xi is labeled and 0 otherwise. Then

R0(f) =
1

l
(f − y)T I(f − y) (15)

Combining R1 in Eq. (10) and R2 in Eq. (14), the final objective function in the discrete form can
be written as follows:

E(f,V) =
1

l
(f − y)T I(f − y) + λ1

∑
i

∑
j∼i

wij
(
(xj − xi)TTivi − fj + fi

)2
+ λ2

∑
i

∑
j∼i

wij ‖PiTjvj − Tivi‖2 (16)
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3.5 Optimization

In this subsection, we discuss how to solve the optimization problem (16).

LetL denote the Laplacian matrix of the graph with weightswij . Then we can rewriteR1 as follows:

R1(f,V) = 2fTLf +
∑
i

∑
j∼i

wij
(
(xj − xi)TTivi

)2 − 2
∑
i

∑
j∼i

wij(xj − xi)TTivisTijf

where sij ∈ Rn is a selection vector of all zero elements except for the i-th element being −1 and
the j-th element being 1. Then the partial derivative of R1 with respect to the variable vi is

∂R1(f,V)
∂vi

= 2
∑
j∼i

wijT
T
i (xj − xi)(xj − xi)TTivi − 2

∑
j∼i

wijT
T
i (xj − xi)sTijf

Thus we get
∂R1(f,V)

∂V
= 2GV− 2Cf (17)

where G is a dn × dn block diagonal matrix, and C = [CT1 , . . . , C
T
n ]
T is a dn × n block matrix.

Denote the i-th d× d diagonal block of G by Gii and the i-th d× n block of C by Ci, we have

Gii =
∑
j∼i

wijT
T
i (xj − xi)(xj − xi)TTi (18)

Ci =
∑
j∼i

wijT
T
i (xj − xi)sTij (19)

The partial derivative of R1 with respect to the variable f is

∂R1(f,V)
∂f

= 4Lf − 2CTV (20)

Similarly, we can compute the partial derivative of R2 with respect to the variable vi:

∂R2(V)
∂vi

= 2
∑
j∼i

wij
(
(TTi TjT

T
j Ti + I)vi − 2TTi Tjvj

)
= 2

∑
j∼i

wij
(
(QijQ

T
ij + I)vi − 2Qijvj

)
where Qij = TTi Tj . Thus we obtain

∂R2

∂V
= 2BV (21)

where B is a dn × dn sparse block matrix. If we index each d × d block by Bij , then for i, j =
1, . . . , n, we have

Bii =
∑
j∼i

wij(QijQ
T
ij + I) (22)

Bij =

{−2wijQij , if xi ∼ xj
0, otherwise

(23)

Notice that ∂R0

∂f = 2 1
l I(f − y). Combining Eq. (17), Eq. (20) and Eq. (21), we have

∂E(f,V)
∂f

=
∂R0

∂f
+ λ1

∂R1

∂f
+ λ2

∂R2

∂f
= 2(

1

l
I+ 2λ1L)f − 2λ1C

TV− 2
1

l
y (24)

∂E(f,V)
∂V

=
∂R0

∂V
+ λ1

∂R1

∂V
+ λ2

∂R2

∂V
= −2λ1Cf + 2(λ1G+ λ2B)V (25)

Requiring that the derivatives vanish, we finally get the following linear system(
1
l I+ 2λ1L −λ1CT
−λ1C λ1G+ λ2B

)(
f
V

)
=

(
1
l y
0

)
(26)
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(a) Ground truth (b) Laplacian (3.65) (c) Hessian (1.35) (d) PFR (1.14)

Figure 2: Global temperature prediction. Regression on the satellite measurement of temperatures
in the middle troposphere. 1% samples are randomly selected as training data. The ground truth
is shown in (a). The colors indicate temperature values (in Kelvin). The regression results are
visualized in (b)∼(d). The numbers in the captions are the mean absolute prediction errors.

4 Related Work and Discussion

The approximation of the Laplacian operator using the graph Laplacian [5] has enjoyed a great
success in the last decade. Some theoretical results [13, 14] also show the consistency of the ap-
proximation. One of the most important features of the graph Laplacian is that it is coordinate free.
That is, it does not depend on any special coordinate system.

The estimation of Hessian is very difficult and there is few work on it. Previous approaches [2, 15]
first estimate normal coordinates in the tangent space, and then estimate the first order derivative at
each point, which is a matrix pseudo-inversion problem. One major limitation of this is that when the
number of nearest neighbors k is larger than d+ d(d+1)

2 , where d is the dimension of the manifold,
the estimation will be inaccurate and unstable [15]. This is contradictory to the asymptotic case,
since it is not desirable that k is bounded by a finite number when the data is sufficiently dense. In
contrast, our method is coordinate free. Also, we directly estimate the norm of the second order
derivative instead of trying to estimate its coefficients, which turns out to be an integral problem
over the neighboring points. We only need to do simple matrix multiplications to approximate the
integral at each point, but do not have to solve matrix inversion problems. Therefore, asymptotically,
we would expect our method to be much more accurate and robust for the approximation of the norm
of the second order derivative.

5 Experiments

In this section, we compare our proposed Parallel Field Regularization (PFR) algorithm with two
state-of-the-art semi-supervised regression methods: Laplacian regularized transduction (Laplacian)
[8] and Hessian regularized transduction (Hessian)1 [15], respectively. Our experiments are carried
out on two real-world data sets. Regularization parameters for all algorithms are chosen via cross-
validation.

5.1 Global Temperature

In this test, we perform regression on the earth surface, which is a 2D sphere manifold. We try to
predict the satellite measurement of temperatures in the middle troposphere in Dec. 20042, which
contains 9504 valid temperature measurements. The coordinates (latitude, longitude) of the mea-
surements are used as features and the corresponding temperature values are the responses. The
dimension of manifold is set to 2 and the number of nearest neighbors is set to 6 in graph construc-
tion. We randomly select 1% of the samples as labeled data, and compare the predicted temperature
values with the ground truth on the rest of the data.

The regression results are shown in Fig. 2. The numbers in the captions indicate the mean absolute
prediction errors generated by different algorithms. It can be seen from the visualization result that

1We use the code from the authors downloadable from http://www.ml.uni-saarland.de/code/
HessianSSR/HessianSSR.html.

2http://www.remss.com/msu/.
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Figure 4: The examples of regression results on the moving hand data
set. 60 labeled samples are used for training. Each row shows the re-
sults obtained via the three algorithms for a frame. In each image, the
red dots indicate the ground truth positions we labeled manually, and
the blue arrows show the positions predicted by different algorithms.

Hessian and PFR perform better than Laplacian. Furthermore, from the prediction error, we can see
that PFR outperforms Hessian.

5.2 Positions of Moving Hands

In this subsection, we perform experiments using a video of a subject sitting in a sofa and waving
his arms 1. Our goal is to predict the positions of the (left and right) elbows and wrists. We extract
the first 500 frames of the video and manually label the positions of the elbows and wrists. We scale
each frame to size of 120 × 90 and use the raw pixels (10800-dimensional vectors) as the features.
The response for each frame is a 8-dimensional vector whose elements are the 2D coordinates of the
elbows and wrists. Since there are 8 free parameters, we set the dimension of manifold to 8. We use
18 nearest neighbors in graph construction.

We run the experiments with different numbers of labeled frames. For each given number of labeled
frames, we perform 10 tests with randomly selected labeled set. The average of the mean absolute
error (MAE) for each test is calculated. The final result is shown in Fig. 3. As can be seen, PFR
consistently outperforms the other two algorithms. Laplacian yields high MAE. Hessian is very
unstable on this dataset, and the results vary drastically with different numbers of labels.

We also show some example frames in Fig. 4. The red dots in the figures indicate the ground truth
positions and the blue arrows are drawn by connecting the positions of elbows and wrists predicted
by different algorithms. Again we can verify that PFR performs better than the other two algorithms.

6 Conclusion

In this paper, we propose a novel semi-supervised learning algorithm from the vector field perspec-
tive. We show the relationship between vector fields and functions on the manifold. The parallelism
of the vector field is used to measure the linearity of the target prediction function. Parallel fields are
one kind of special vector fields on the manifold, which have very nice properties. It is interesting
to explore other kinds of vector fields to facilitate learning on manifolds. Moreover, vector fields
can also be used to study the geometry and topology of the manifold. For example, Poincaré-Hopf
theorem tells us that the sum of the indices over all the isolated zeroes of a vector field equals to the
Euler characteristic of the manifold, which is a very important topological invariant.
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