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Abstract

Learning to predict multi-label outputs is challenging, but in many problems there
is a natural metric on the outputs that can be used to improve predictions. In this
paper we develop a loss function for multi-label learning, based on the Wasserstein
distance. The Wasserstein distance provides a natural notion of dissimilarity for
probability measures. Although optimizing with respect to the exact Wasserstein
distance is costly, recent work has described a regularized approximation that is
efficiently computed. We describe an efficient learning algorithm based on this
regularization, as well as a novel extension of the Wasserstein distance from prob-
ability measures to unnormalized measures. We also describe a statistical learning
bound for the loss. The Wasserstein loss can encourage smoothness of the predic-
tions with respect to a chosen metric on the output space. We demonstrate this
property on a real-data tag prediction problem, using the Yahoo Flickr Creative
Commons dataset, outperforming a baseline that doesn’t use the metric.

1 Introduction

We consider the problem of learning to predict a non-negative measure over a finite set. This prob-
lem includes many common machine learning scenarios. In multiclass classification, for example,
one often predicts a vector of scores or probabilities for the classes. And in semantic segmenta-
tion [1], one can model the segmentation as being the support of a measure defined over the pixel
locations. Many problems in which the output of the learning machine is both non-negative and
multi-dimensional might be cast as predicting a measure.

We specifically focus on problems in which the output space has a natural metric or similarity struc-
ture, which is known (or estimated) a priori. In practice, many learning problems have such struc-
ture. In the ImageNet Large Scale Visual Recognition Challenge [ILSVRC] [2], for example, the
output dimensions correspond to 1000 object categories that have inherent semantic relationships,
some of which are captured in the WordNet hierarchy that accompanies the categories. Similarly, in
the keyword spotting task from the IARPA Babel speech recognition project, the outputs correspond
to keywords that likewise have semantic relationships. In what follows, we will call the similarity
structure on the label space the ground metric or semantic similarity.

Using the ground metric, we can measure prediction performance in a way that is sensitive to re-
lationships between the different output dimensions. For example, confusing dogs with cats might

∗Authors contributed equally.
1Code and data are available at http://cbcl.mit.edu/wasserstein.
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Figure 2: The Wasserstein loss encourages predictions that are similar to ground truth, robustly
to incorrect labeling of similar classes (see Appendix E.1). Shown is Euclidean distance between
prediction and ground truth vs. (left) number of classes, averaged over different noise levels and
(right) noise level, averaged over number of classes. Baseline is the multiclass logistic loss.

be more severe an error than confusing breeds of dogs. A loss function that incorporates this metric
might encourage the learning algorithm to favor predictions that are, if not completely accurate, at
least semantically similar to the ground truth.

In this paper, we develop a loss function for multi-label learn-

Siberian husky Eskimo dog

Figure 1: Semantically near-
equivalent classes in ILSVRC

ing that measures the Wasserstein distance between a prediction
and the target label, with respect to a chosen metric on the out-
put space. The Wasserstein distance is defined as the cost of
the optimal transport plan for moving the mass in the predicted
measure to match that in the target, and has been applied to a
wide range of problems, including barycenter estimation [3], la-
bel propagation [4], and clustering [5]. To our knowledge, this
paper represents the first use of the Wasserstein distance as a
loss for supervised learning.

We briefly describe a case in which the Wasserstein loss improves learning performance. The setting
is a multiclass classification problem in which label noise arises from confusion of semantically
near-equivalent categories. Figure 1 shows such a case from the ILSVRC, in which the categories
Siberian husky and Eskimo dog are nearly indistinguishable. We synthesize a toy version of this
problem by identifying categories with points in the Euclidean plane and randomly switching the
training labels to nearby classes. The Wasserstein loss yields predictions that are closer to the ground
truth, robustly across all noise levels, as shown in Figure 2. The standard multiclass logistic loss is
the baseline for comparison. Section E.1 in the Appendix describes the experiment in more detail.

The main contributions of this paper are as follows. We formulate the problem of learning with prior
knowledge of the ground metric, and propose the Wasserstein loss as an alternative to traditional
information divergence-based loss functions. Specifically, we focus on empirical risk minimization
(ERM) with the Wasserstein loss, and describe an efficient learning algorithm based on entropic
regularization of the optimal transport problem. We also describe a novel extension to unnormalized
measures that is similarly efficient to compute. We then justify ERM with the Wasserstein loss
by showing a statistical learning bound. Finally, we evaluate the proposed loss on both synthetic
examples and a real-world image annotation problem, demonstrating benefits for incorporating an
output metric into the loss.

2 Related work

Decomposable loss functions like KL Divergence and `p distances are very popular for probabilis-
tic [1] or vector-valued [6] predictions, as each component can be evaluated independently, often
leading to simple and efficient algorithms. The idea of exploiting smoothness in the label space
according to a prior metric has been explored in many different forms, including regularization [7]
and post-processing with graphical models [8]. Optimal transport provides a natural distance for
probability distributions over metric spaces. In [3, 9], the optimal transport is used to formulate
the Wasserstein barycenter as a probability distribution with minimum total Wasserstein distance
to a set of given points on the probability simplex. [4] propagates histogram values on a graph by
minimizing a Dirichlet energy induced by optimal transport. The Wasserstein distance is also used
to formulate a metric for comparing clusters in [5], and is applied to image retrieval [10], contour
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matching [11], and many other problems [12, 13]. However, to our knowledge, this is the first time
it is used as a loss function in a discriminative learning framework. The closest work to this pa-
per is a theoretical study [14] of an estimator that minimizes the optimal transport cost between the
empirical distribution and the estimated distribution in the setting of statistical parameter estimation.

3 Learning with a Wasserstein loss

3.1 Problem setup and notation

We consider the problem of learning a map from X ⊂ RD into the space Y = RK+ of measures over
a finite set K of size |K| = K. Assume K possesses a metric dK(·, ·), which is called the ground
metric. dK measures semantic similarity between dimensions of the output, which correspond to
the elements of K. We perform learning over a hypothesis space H of predictors hθ : X → Y ,
parameterized by θ ∈ Θ. These might be linear logistic regression models, for example.

In the standard statistical learning setting, we get an i.i.d. sequence of training examples S =
((x1, y1), . . . , (xN , yN )), sampled from an unknown joint distribution PX×Y . Given a measure of
performance (a.k.a. risk) E(·, ·), the goal is to find the predictor hθ ∈ H that minimizes the expected
risk E[E(hθ(x), y)]. Typically E(·, ·) is difficult to optimize directly and the joint distribution PX×Y
is unknown, so learning is performed via empirical risk minimization. Specifically, we solve

min
hθ∈H

{
ÊS [`(hθ(x), y) =

1

N

N∑
i=1

`(hθ(xi), yi)

}
(1)

with a loss function `(·, ·) acting as a surrogate of E(·, ·).

3.2 Optimal transport and the exact Wasserstein loss

Information divergence-based loss functions are widely used in learning with probability-valued out-
puts. Along with other popular measures like Hellinger distance and χ2 distance, these divergences
treat the output dimensions independently, ignoring any metric structure on K.

Given a cost function c : K × K → R, the optimal transport distance [15] measures the cheapest
way to transport the mass in probability measure µ1 to match that in µ2:

Wc(µ1, µ2) = inf
γ∈Π(µ1,µ2)

∫
K×K

c(κ1, κ2)γ(dκ1, dκ2) (2)

where Π(µ1, µ2) is the set of joint probability measures onK×K having µ1 and µ2 as marginals. An
important case is that in which the cost is given by a metric dK(·, ·) or its p-th power dpK(·, ·) with p ≥
1. In this case, (2) is called a Wasserstein distance [16], also known as the earth mover’s distance
[10]. In this paper, we only work with discrete measures. In the case of probability measures, these
are histograms in the simplex ∆K. When the ground truth y and the output of h both lie in the
simplex ∆K, we can define a Wasserstein loss.

Definition 3.1 (Exact Wasserstein Loss). For any hθ ∈ H, hθ : X → ∆K, let hθ(κ|x) = hθ(x)κ be
the predicted value at element κ ∈ K, given input x ∈ X . Let y(κ) be the ground truth value for κ
given by the corresponding label y. Then we define the exact Wasserstein loss as

W p
p (h(·|x), y(·)) = inf

T∈Π(h(x),y)
〈T,M〉 (3)

where M ∈ RK×K+ is the distance matrix Mκ,κ′ = dpK(κ, κ′), and the set of valid transport plans is

Π(h(x), y) = {T ∈ RK×K+ : T1 = h(x), T>1 = y} (4)

where 1 is the all-one vector.

W p
p is the cost of the optimal plan for transporting the predicted mass distribution h(x) to match

the target distribution y. The penalty increases as more mass is transported over longer distances,
according to the ground metric M .
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Algorithm 1 Gradient of the Wasserstein loss

Given h(x), y, λ, K. (γa, γb if h(x), y unnormalized.)
u← 1
while u has not converged do

u←


h(x)�

(
K
(
y �K>u

))
if h(x), y normalized

h(x)
γaλ
γaλ+1 �

(
K
(
y �K>u

) γbλ

γbλ+1

) γaλ
γaλ+1

if h(x), y unnormalized

end while
If h(x), y unnormalized: v ← y

γbλ

γbλ+1 �
(
K>u

) γbλ

γbλ+1

∂W p
p /∂h(x)←

{
log u
λ − log u>1

λK 1 if h(x), y normalized
γa (1− (diag(u)Kv)� h(x)) if h(x), y unnormalized

4 Efficient optimization via entropic regularization

To do learning, we optimize the empirical risk minimization functional (1) by gradient descent.
Doing so requires evaluating a descent direction for the loss, with respect to the predictions h(x).
Unfortunately, computing a subgradient of the exact Wasserstein loss (3), is quite costly, as follows.

The exact Wasserstein loss (3) is a linear program and a subgradient of its solution can be computed
using Lagrange duality. The dual LP of (3) is
dW p

p (h(x), y) = sup
α,β∈CM

α>h(x) + β>y, CM = {(α, β) ∈ RK×K : ακ + βκ′ ≤Mκ,κ′}. (5)

As (3) is a linear program, at an optimum the values of the dual and the primal are equal (see, e.g.
[17]), hence the dual optimal α is a subgradient of the loss with respect to its first argument.

Computing α is costly, as it entails solving a linear program with O(K2) contraints, with K being
the dimension of the output space. This cost can be prohibitive when optimizing by gradient descent.

4.1 Entropic regularization of optimal transport

Cuturi [18] proposes a smoothed transport objective that enables efficient approximation of both the
transport matrix in (3) and the subgradient of the loss. [18] introduces an entropic regularization
term that results in a strictly convex problem:

λW p
p (h(·|x), y(·)) = inf

T∈Π(h(x),y)
〈T,M〉 − 1

λ
H(T ), H(T ) = −

∑
κ,κ′

Tκ,κ′ log Tκ,κ′ . (6)

Importantly, the transport matrix that solves (6) is a diagonal scaling of a matrix K = e−λM−1:

T ∗ = diag(u)Kdiag(v) (7)

for u = eλα and v = eλβ , where α and β are the Lagrange dual variables for (6).

Identifying such a matrix subject to equality constraints on the row and column sums is exactly a
matrix balancing problem, which is well-studied in numerical linear algebra and for which efficient
iterative algorithms exist [19]. [18] and [3] use the well-known Sinkhorn-Knopp algorithm.

4.2 Extending smoothed transport to the learning setting

When the output vectors h(x) and y lie in the simplex, (6) can be used directly in place of (3), as
(6) can approximate the exact Wasserstein distance closely for large enough λ [18]. In this case, the
gradient α of the objective can be obtained from the optimal scaling vector u as α = log u

λ −
log u>1
λK 1.

1 A Sinkhorn iteration for the gradient is given in Algorithm 1.
1Note that α is only defined up to a constant shift: any upscaling of the vector u can be paired with a

corresponding downscaling of the vector v (and vice versa) without altering the matrix T ∗. The choice α =
log u
λ

− log u>1
λK

1 ensures that α is tangent to the simplex.
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(a) Convergence to smoothed trans-
port.

(b) Approximation of exact
Wasserstein.

(c) Convergence of alternating pro-
jections (λ = 50).

Figure 3: The relaxed transport problem (8) for unnormalized measures.

For many learning problems, however, a normalized output assumption is unnatural. In image seg-
mentation, for example, the target shape is not naturally represented as a histogram. And even when
the prediction and the ground truth are constrained to the simplex, the observed label can be subject
to noise that violates the constraint.

There is more than one way to generalize optimal transport to unnormalized measures, and this is a
subject of active study [20]. We will develop here a novel objective that deals effectively with the
difference in total mass between h(x) and y while still being efficient to optimize.

4.3 Relaxed transport

We propose a novel relaxation that extends smoothed transport to unnormalized measures. By re-
placing the equality constraints on the transport marginals in (6) with soft penalties with respect to
KL divergence, we get an unconstrained approximate transport problem. The resulting objective is:

λ,γa,γbWKL(h(·|x), y(·)) = min
T∈RK×K+

〈T,M〉− 1

λ
H(T )+γaK̃L (T1‖h(x))+γbK̃L

(
T>1‖y

)
(8)

where K̃L (w‖z) = w> log(w � z) − 1>w + 1>z is the generalized KL divergence between
w, z ∈ RK+ . Here� represents element-wise division. As with the previous formulation, the optimal
transport matrix with respect to (8) is a diagonal scaling of the matrix K.
Proposition 4.1. The transport matrix T ∗ optimizing (8) satisfies T ∗ = diag(u)Kdiag(v), where
u = (h(x)� T ∗1)

γaλ, v =
(
y � (T ∗)>1

)γbλ, and K = e−λM−1.

And the optimal transport matrix is a fixed point for a Sinkhorn-like iteration. 2

Proposition 4.2. T ∗ = diag(u)Kdiag(v) optimizing (8) satisfies: i) u = h(x)
γaλ
γaλ+1�(Kv)

− γaλ
γaλ+1 ,

and ii) v = y
γbλ

γbλ+1 �
(
K>u

)− γbλ

γbλ+1 , where � represents element-wise multiplication.

Unlike the previous formulation, (8) is unconstrained with respect to h(x). The gradient is given by
∇h(x)WKL(h(·|x), y(·)) = γa (1− T ∗1� h(x)). The iteration is given in Algorithm 1.

When restricted to normalized measures, the relaxed problem (8) approximates smoothed transport
(6). Figure 3a shows, for normalized h(x) and y, the relative distance between the values of (8) and
(6) 3. For λ large enough, (8) converges to (6) as γa and γb increase.

(8) also retains two properties of smoothed transport (6). Figure 3b shows that, for normalized
outputs, the relaxed loss converges to the unregularized Wasserstein distance as λ, γa and γb increase
4. And Figure 3c shows that convergence of the iterations in (4.2) is nearly independent of the
dimension K of the output space.

2Note that, although the iteration suggested by Proposition 4.2 is observed empirically to converge (see
Figure 3c, for example), we have not proven a guarantee that it will do so.

3In figures 3a-c, h(x), y and M are generated as described in [18] section 5. In 3a-b, h(x) and y have
dimension 256. In 3c, convergence is defined as in [18]. Shaded regions are 95% intervals.

4The unregularized Wasserstein distance was computed using FastEMD [21].
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(a) Posterior predictions for images of digit 0.
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(b) Posterior predictions for images of digit 4.

Figure 4: MNIST example. Each curve shows the predicted probability for one digit, for models
trained with different p values for the ground metric.

5 Statistical Properties of the Wasserstein loss

Let S = ((x1, y1), . . . , (xN , yN )) be i.i.d. samples and hθ̂ be the empirical risk minimizer

hθ̂ = argmin
hθ∈H

{
ÊS
[
W p
p (hθ(·|x), y)

]
=

1

N

N∑
i=1

W p
p (hxθ(·|xi), yi)

}
.

Further assume H = s ◦ Ho is the composition of a softmax s and a base hypothesis space Ho of
functions mapping into RK . The softmax layer outputs a prediction that lies in the simplex ∆K.

Theorem 5.1. For p = 1, and any δ > 0, with probability at least 1− δ, it holds that

E
[
W 1

1 (hθ̂(·|x), y)
]
≤ inf
hθ∈H

E
[
W 1

1 (hθ(·|x), y)
]

+ 32KCMRN (Ho) + 2CM

√
log(1/δ)

2N
(9)

with the constant CM = maxκ,κ′Mκ,κ′ . RN (Ho) is the Rademacher complexity [22] measuring
the complexity of the hypothesis spaceHo.

The Rademacher complexity RN (Ho) for commonly used models like neural networks and kernel
machines [22] decays with the training set size. This theorem guarantees that the expected Wasser-
stein loss of the empirical risk minimizer approaches the best achievable loss forH.

As an important special case, minimizing the empirical risk with Wasserstein loss is also good for
multiclass classification. Let y = eκ be the “one-hot” encoded label vector for the groundtruth class.

Proposition 5.2. In the multiclass classification setting, for p = 1 and any δ > 0, with probability
at least 1− δ, it holds that

Ex,κ
[
dK(κθ̂(x), κ)

]
≤ inf
hθ∈H

KE[W 1
1 (hθ(x), y)]+32K2CMRN (Ho)+2CMK

√
log(1/δ)

2N
(10)

where the predictor is κθ̂(x) = argmaxκ hθ̂(κ|x), with hθ̂ being the empirical risk minimizer.

Note that instead of the classification error Ex,κ[1{κθ̂(x) 6= κ}], we actually get a bound on the
expected semantic distance between the prediction and the groundtruth.

6 Empirical study

6.1 Impact of the ground metric

In this section, we show that the Wasserstein loss encourages smoothness with respect to an artificial
metric on the MNIST handwritten digit dataset. This is a multi-class classification problem with
output dimensions corresponding to the 10 digits, and we apply a ground metric dp(κ, κ′) = |κ −
κ′|p, where κ, κ′ ∈ {0, . . . , 9} and p ∈ [0,∞). This metric encourages the recognized digit to be
numerically close to the true one. We train a model independently for each value of p and plot the
average predicted probabilities of the different digits on the test set in Figure 4.
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(a) Original Flickr tags dataset.
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(b) Reduced-redundancy Flickr tags dataset.

Figure 5: Top-K cost comparison of the proposed loss (Wasserstein) and the baseline (Divergence).

Note that as p → 0, the metric approaches the 0 − 1 metric d0(κ, κ′) = 1κ6=κ′ , which treats all
incorrect digits as being equally unfavorable. In this case, as can be seen in the figure, the predicted
probability of the true digit goes to 1 while the probability for all other digits goes to 0. As p
increases, the predictions become more evenly distributed over the neighboring digits, converging
to a uniform distribution as p→∞ 5.

6.2 Flickr tag prediction

We apply the Wasserstein loss to a real world multi-label learning problem, using the recently re-
leased Yahoo/Flickr Creative Commons 100M dataset [23]. 6 Our goal is tag prediction: we select
1000 descriptive tags along with two random sets of 10,000 images each, associated with these tags,
for training and testing. We derive a distance metric between tags by using word2vec [24] to
embed the tags as unit vectors, then taking their Euclidean distances. To extract image features we
use MatConvNet [25]. Note that the set of tags is highly redundant and often many semantically
equivalent or similar tags can apply to an image. The images are also partially tagged, as different
users may prefer different tags. We therefore measure the prediction performance by the top-K cost,
defined as CK = 1/K

∑K
k=1 minj dK(κ̂k, κj), where {κj} is the set of groundtruth tags, and {κ̂k}

are the tags with highest predicted probability. The standard AUC measure is also reported.

We find that a linear combination of the Wasserstein lossW p
p and the standard multiclass logistic loss

KL yields the best prediction results. Specifically, we train a linear model by minimizingW p
p +αKL

on the training set, where α controls the relative weight of KL. Note that KL taken alone is our
baseline in these experiments. Figure 5a shows the top-K cost on the test set for the combined loss
and the baseline KL loss. We additionally create a second dataset by removing redundant labels
from the original dataset: this simulates the potentially more difficult case in which a single user
tags each image, by selecting one tag to apply from amongst each cluster of applicable, semantically
similar tags. Figure 3b shows that performance for both algorithms decreases on the harder dataset,
while the combined Wasserstein loss continues to outperform the baseline.

In Figure 6, we show the effect on performance of varying the weight α on the KL loss. We observe
that the optimum of the top-K cost is achieved when the Wasserstein loss is weighted more heavily
than at the optimum of the AUC. This is consistent with a semantic smoothing effect of Wasserstein,
which during training will favor mispredictions that are semantically similar to the ground truth,
sometimes at the cost of lower AUC 7. We finally show two selected images from the test set in
Figure 7. These illustrate cases in which both algorithms make predictions that are semantically
relevant, despite overlapping very little with the ground truth. The image on the left shows errors
made by both algorithms. More examples can be found in the appendix.

5To avoid numerical issues, we scale down the ground metric such that all of the distance values are in the
interval [0, 1).

6The dataset used here is available at http://cbcl.mit.edu/wasserstein.
7The Wasserstein loss can achieve a similar trade-off by choosing the metric parameter p, as discussed in

Section 6.1. However, the relationship between p and the smoothing behavior is complex and it can be simpler
to implement the trade-off by combining with the KL loss.

7
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(b) Reduced-redundancy Flickr tags dataset.

Figure 6: Trade-off between semantic smoothness and maximum likelihood.

(a) Flickr user tags: street, parade, dragon; our
proposals: people, protest, parade; baseline pro-
posals: music, car, band.

(b) Flickr user tags: water, boat, reflection, sun-
shine; our proposals: water, river, lake, summer;
baseline proposals: river, water, club, nature.

Figure 7: Examples of images in the Flickr dataset. We show the groundtruth tags and as well as
tags proposed by our algorithm and the baseline.

7 Conclusions and future work

In this paper we have described a loss function for learning to predict a non-negative measure over a
finite set, based on the Wasserstein distance. Although optimizing with respect to the exact Wasser-
stein loss is computationally costly, an approximation based on entropic regularization is efficiently
computed. We described a learning algorithm based on this regularization and we proposed a novel
extension of the regularized loss to unnormalized measures that preserves its efficiency. We also
described a statistical learning bound for the loss. The Wasserstein loss can encourage smoothness
of the predictions with respect to a chosen metric on the output space, and we demonstrated this
property on a real-data tag prediction problem, showing improved performance over a baseline that
doesn’t incorporate the metric.

An interesting direction for future work may be to explore the connection between the Wasserstein
loss and Markov random fields, as the latter are often used to encourage smoothness of predictions,
via inference at prediction time.
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A Relaxed transport

Equation (8) gives the relaxed transport objective as

λ,γa,γbWKL(h(·|x), y(·)) = min
T∈RK×K+

〈T,M〉 − 1

λ
H(T ) + γaK̃L (T1‖h(x)) + γbK̃L

(
T>1‖y

)
with K̃L (w‖z) = w> log(w � z)− 1>w + 1>z.

Proof of Proposition 4.1. The first order condition for T ∗ optimizing (8) is

Mij +
1

λ

(
log T ∗ij + 1

)
+ γa (log T ∗1� h(x))i + γb

(
log(T ∗)>1� y

)
j

= 0.

⇒ log T ∗ij + γaλ log (T ∗1� h(xi))i + γbλ log
(
(T ∗)>1� yj

)
j

= −λMij − 1

⇒T ∗ij (T ∗1� h(x))
γaλ
i

(
(T ∗)>1� y

)γbλ
j

= exp (−λMij − 1)

⇒T ∗ij = (h(x)� T ∗1)
γaλ
i

(
y � (T ∗)>1

)γbλ
j

exp (−λMij − 1)

Hence T ∗ (if it exists) is a diagonal scaling of K = exp (−λM − 1).

Proof of Proposition 4.2. Let u = (h(x)� T ∗1)
γaλ and v =

(
y � (T ∗)>1

)γbλ, so T ∗ =
diag(u)Kdiag(v). We have

T ∗1 = diag(u)Kv

⇒ (T ∗1)
γaλ+1

= h(x)γaλ �Kv

where we substituted the expression for u. Re-writing T ∗1,

(diag(u)Kv)
γaλ+1

= diag(h(x)γaλ)Kv

⇒uγaλ+1 = h(x)γaλ � (Kv)
−γaλ

⇒u = h(x)
γaλ
γaλ+1 � (Kv)−

γaλ
γaλ+1 .

A symmetric argument shows that v = y
γbλ

γbλ+1 � (K>u)
− γbλ

γbλ+1 .

B Statistical Learning Bounds

We establish the proof of Theorem 5.1 in this section. For simpler notation, for a sequence S =

((x1, y1), . . . , (xN , yN )) of i.i.d. training samples, we denote the empirical risk R̂S and risk R as

R̂S(hθ) = ÊS
[
W p
p (hθ(·|x), y(·))

]
, R(hθ) = E

[
W p
p (hθ(·|x), y(·))

]
(11)

Lemma B.1. Let hθ̂, hθ∗ ∈ H be the minimizer of the empirical risk R̂S and expected risk R,
respectively. Then

R(hθ̂) ≤ R(hθ∗) + 2 sup
h∈H
|R(h)− R̂S(h)|

Proof. By the optimality of hθ̂ for R̂S ,

R(hθ̂)−R(hθ∗) = R(hθ̂)− R̂S(hθ̂) + R̂S(hθ̂)−R(hθ∗)

≤ R(hθ̂)− R̂S(hθ̂) + R̂S(hθ∗)−R(hθ∗)

≤ 2 sup
h∈H
|R(h)− R̂S(h)|

10



Therefore, to bound the risk for hθ̂, we need to establish uniform concentration bounds for the
Wasserstein loss. Towards that goal, we define a space of loss functions induced by the hypothesis
spaceH as

L =
{
`θ : (x, y) 7→W p

p (hθ(·|x), y(·)) : hθ ∈ H
}

(12)
The uniform concentration will depends on the “complexity” of L, which is measured by the empir-
ical Rademacher complexity defined below.
Definition B.2 (Rademacher Complexity [22]). Let G be a family of mapping from Z to R, and
S = (z1, . . . , zN ) a fixed sample from Z . The empirical Rademacher complexity of G with respect
to S is defined as

R̂S(G) = Eσ

[
sup
g∈G

1

N

n∑
i=1

σig(zi)

]
(13)

where σ = (σ1, . . . , σN ), with σi’s independent uniform random variables taking values in
{+1,−1}. σi’s are called the Rademacher random variables. The Rademacher complexity is de-
fined by taking expectation with respect to the samples S,

RN (G) = ES
[
R̂S(G)

]
(14)

Theorem B.3. For any δ > 0, with probability at least 1− δ, the following holds for all `θ ∈ L,

E[`θ]− ÊS [`θ] ≤ 2RN (L) +

√
C2
M log(1/δ)

2N
(15)

with the constant CM = maxκ,κ′Mκ,κ′ .

By the definition of L, E[`θ] = R(hθ) and ÊS [`θ] = R̂S [hθ]. Therefore, this theorem provides a
uniform control for the deviation of the empirical risk from the risk.
Theorem B.4 (McDiarmid’s Inequality). Let S = {X1, . . . , XN} ⊂ X be N i.i.d. random vari-
ables. Assume there exists C > 0 such that f : X N → R satisfies the following stability condition

|f(x1, . . . , xi, . . . , xN )− f(x1, . . . , x
′
i, . . . , xN )| ≤ C (16)

for all i = 1, . . . , N and any x1, . . . , xN , x
′
i ∈ X . Then for any ε > 0, denoting f(X1, . . . , XN )

by f(S), it holds that

P (f(S)− E[f(S)] ≥ ε) ≤ exp

(
− 2ε2

NC2

)
(17)

Lemma B.5. Let the constant CM = maxκ,κ′Mκ,κ′ , then 0 ≤W p
p (·, ·) ≤ CM .

Proof. For any h(·|x) and y(·), let T ∗ ∈ Π(h(x), y) be the optimal transport plan that solves (3),
then

W p
p (h(x), y) = 〈T ∗,M〉 ≤ CM

∑
κ,κ′

Tκ,κ′ = CM

Proof of Theorem B.3. For any `θ ∈ L, note the empirical expectation is the empirical risk of the
corresponding hθ:

ÊS [`θ] =
1

N

N∑
i=1

`θ(xi, yi) =
1

N

N∑
i=1

W p
p (hθ(·|xi), yi(·)) = R̂S(hθ)

Similarly, E[`θ] = R(hθ). Let
Φ(S) = sup

`∈L
E[`]− ÊS [`] (18)

Let S′ be S with the i-th sample replaced by (x′i, y
′
i), by Lemma B.5, it holds that

Φ(S)− Φ(S′) ≤ sup
`∈L

ÊS′ [`]− ÊS [`] = sup
hθ∈H

W p
p (hθ(x

′
i), y

′
i)−W p

p (hθ(xi), yi)

N
≤ CM

N

11



Similarly, we can show Φ(S′)−Φ(S) ≤ CM/N , thus |Φ(S′)−Φ(S)| ≤ CM/N . By Theorem B.4,
for any δ > 0, with probability at least 1− δ, it holds that

Φ(S) ≤ E[Φ(S)] +

√
C2
M log(1/δ)

2N
(19)

To bound E[Φ(S)], by Jensen’s inequality,

ES [Φ(S)] = ES
[
sup
`∈L

E[`]− ÊS [`]

]
= ES

[
sup
`∈L

ES′
[
ÊS′ [`]− ÊS [`]

]]
≤ ES,S′

[
sup
`∈L

ÊS′ [`]− ÊS [`]

]
Here S′ is another sequence of i.i.d. samples, usually called ghost samples, that is only used for
analysis. Now we introduce the Rademacher variables σi, since the role of S and S′ are completely
symmetric, it follows

ES [Φ(S)] ≤ ES,S′,σ

[
sup
`∈L

1

N

N∑
i=1

σi(`(x
′
i, y
′
i)− `(xi, yi))

]

≤ ES′,σ

[
sup
`∈L

1

N

N∑
i=1

σi`(x
′
i, y
′
i)

]
+ ES,σ

[
sup
`∈L

1

N

N∑
i=1

−σi`(xi, yi)

]
= ES

[
R̂S(L)

]
+ ES′

[
R̂S′(L)

]
= 2RN (L)

The conclusion follows by combing (18) and (19).

To finish the proof of Theorem 5.1, we combine Lemma B.1 and Theorem B.3, and relate RN (L)
to RN (H) via the following generalized Talagrand’s lemma [26].
Lemma B.6. Let F be a class of real functions, and H ⊂ F = F1 × . . . × FK be a K-valued
function class. If m : RK → R is a Lm-Lipschitz function and m(0) = 0, then R̂S(m ◦ H) ≤
2Lm

∑K
k=1 R̂S(Fk).

Theorem B.7 (Theorem 6.15 of [15]). Let µ and ν be two probability measures on a Polish space
(K, dK). Let p ∈ [1,∞) and κ0 ∈ K. Then

Wp(µ, ν) ≤ 21/p′
(∫
K
dK(κ0, κ)d|µ− ν|(κ)

)1/p

,
1

p
+

1

p′
= 1 (20)

Corollary B.8. The Wasserstein loss is Lipschitz continuous in the sense that for any hθ ∈ H, and
any (x, y) ∈ X × Y ,

W p
p (hθ(·|x), y) ≤ 2p−1CM

∑
κ∈K
|hθ(κ|x)− y(κ)| (21)

In particular, when p = 1, we have

W 1
1 (hθ(·|x), y) ≤ CM

∑
κ∈K
|hθ(κ|x)− y(κ)| (22)

We cannot apply Lemma B.6 directly to the Wasserstein loss class, because the Wasserstein loss is
only defined on probability distributions, so 0 is not a valid input. To get around this problem, we
assume the hypothesis spaceH used in learning is of the form

H = {s ◦ ho : ho ∈ Ho} (23)

where Ho is a function class that maps into RK , and s is the softmax function defined as s(o) =
(s1(o), . . . , sK(o)), with

sk(o) =
eok∑
j e
oj
, k = 1, . . . ,K (24)

The softmax layer produce a valid probability distribution from arbitrary input, and this is consistent
with commonly used models such as Logistic Regression and Neural Networks. By working with
the log of the groundtruth labels, we can also add a softmax layer to the labels.
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Lemma B.9 (Proposition 2 of [27]). The Wasserstein distances Wp(·, ·) are metrics on the space of
probability distributions of K, for all 1 ≤ p ≤ ∞.
Proposition B.10. The map ι : RK × RK → R defined by ι(y, y′) = W 1

1 (s(y), s(y′)) satisfies

|ι(y, y′)− ι(ȳ, ȳ′)| ≤ 4CM‖(y, y′)− (ȳ, ȳ′)‖2 (25)

for any (y, y′), (ȳ, ȳ′) ∈ RK × RK . And ι(0, 0) = 0.

Proof. For any (y, y′), (ȳ, ȳ′) ∈ RK × RK , by Lemma B.9, we can use triangle inequality on the
Wasserstein loss,

|ι(y, y′)− ι(ȳ, ȳ′)| = |ι(y, y′)− ι(ȳ, y′) + ι(ȳ, y′)− ι(ȳ, ȳ′)| ≤ ι(y, ȳ) + ι(y′, ȳ′)

Following Corollary B.8, it continues as

|ι(y, y′)− ι(ȳ, ȳ′)| ≤ CM (‖s(y)− s(ȳ)‖1 + ‖s(y′)− s(ȳ′)‖1) (26)

Note for each k = 1, . . . ,K, the gradient∇ysk satisfies

‖∇ysk‖2 =

∥∥∥∥∥
(
∂sk
∂yj

)K
j=1

∥∥∥∥∥
2

=
∥∥∥(δkjsk − sksj)

K
j=1

∥∥∥
2

=

√√√√s2
k

K∑
j=1

s2
j + s2

k(1− 2sk) (27)

By mean value theorem, ∃α ∈ [0, 1], such that for yθ = αy + (1− α)ȳ, it holds that

‖s(y)− s(ȳ)‖1 =

K∑
k=1

∣∣∣〈∇ysk|y=yαk
, y − ȳ〉

∣∣∣ ≤ K∑
k=1

‖∇ysk|y=yαk
‖2‖y − ȳ‖2 ≤ 2‖y − ȳ‖2

because by (27), and the fact that
√∑

j s
2
j ≤

∑
j sj = 1 and

√
a+ b ≤

√
a +
√
b for a, b ≥ 0, it

holds
K∑
k=1

‖∇ysk‖2 =
∑

k:sk≤1/2

‖∇ysk‖2 +
∑

k:sk>1/2

‖∇ysk‖2

≤
∑

k:sk≤1/2

(
sk + sk

√
1− 2sk

)
+

∑
k:sk>1/2

sk ≤
K∑
k=1

2sk = 2

Similarly, we have ‖s(y′)− s(ȳ′)‖1 ≤ 2‖y′ − ȳ′‖2, so from (26), we know

|ι(y, y′)− ι(ȳ, ȳ′)| ≤ 2CM (‖y − ȳ‖2 + ‖y′ − ȳ′‖2) ≤ 2
√

2CM
(
‖y − ȳ‖22 + ‖y′ − ȳ′‖22

)1/2
then (25) follows immediately. The second conclusion follows trivially as s maps the zero vector to
a uniform distribution.

Proof of Theorem 5.1. Consider the loss function space preceded with a softmax layer

L = {ιθ : (x, y) 7→W 1
1 (s(hoθ(x)), s(y)) : hoθ ∈ Ho}

We apply Lemma B.6 to the 4CM -Lipschitz continuous function ι in Proposition B.10 and the
function space

Ho × . . .×Ho︸ ︷︷ ︸
K copies

×I × . . .× I︸ ︷︷ ︸
K copies

with I a singleton function space with only the identity map. It holds

R̂S(L) ≤ 8CM

(
KR̂S(Ho) +KR̂S(I)

)
= 8KCM R̂S(Ho) (28)

because for the identity map, and a sample S = (y1, . . . , yN ), we can calculate

R̂S(I) = Eσ

[
sup
f∈I

1

N

N∑
i=1

σif(yi)

]
= Eσ

[
1

N

N∑
i=1

σiyi

]
= 0

The conclusion of the theorem follows by combining (28) with Theorem B.3 and Lemma B.1.
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C Connection with multiclass classification

Proof of Proposition 5.2. Given that the label is a “one-hot” vector y = eκ, the set of transport plans
(4) degenerates. Specifically, the constraint T>1 = eκ means that only the κ-th column of T can
be non-zero. Furthermore, the constraint T1 = hθ̂(·|x) ensures that the κ-th column of T actually
equals hθ̂(·|x). In other words, the set Π(hθ̂(·|x), eκ) contains only one feasible transport plan, so
(3) can be computed directly as

W p
p (hθ̂(·|x), eκ) =

∑
κ′∈K

Mκ′,κhθ̂(κ
′|x) =

∑
κ′∈K

dpK(κ′, κ)hθ̂(κ
′|x)

Now let κ̂ = argmaxκ hθ̂(κ|x) be the prediction, we have

hθ̂(κ̂|x) = 1−
∑
κ6=κ̂

hθ̂(κ|x) ≥ 1−
∑
κ 6=κ̂

hθ̂(κ̂|x) = 1− (K − 1)hθ̂(κ̂|x)

Therefore, hθ̂(κ̂|x) ≥ 1/K, so

W p
p (hθ̂(·|x), eκ) ≥ dpK(κ̂, κ)hθ̂(κ̂|x) ≥ dpK(κ̂, κ)/K

The conclusion follows by applying Theorem 5.1 with p = 1.

D Algorithmic Details of Learning with a Wasserstein Loss

In Section 5, we describe the statistical generalization properties of learning with a Wasserstein loss
function via empirical risk minimization on a general space of classifiers H. In all the empirical
studies presented in the paper, we use the space of linear logistic regression classifiers, defined by

H =

hθ(x) =

(
exp(θ>k x)∑K
j=1 exp(θ>j x)

)K
k=1

: θk ∈ RD, k = 1, ...,K


We use stochastic gradient descent with a mini-batch size of 100 samples to optimize the empirical
risk, with a standard regularizer 0.0005

∑K
k=1 ‖θk‖22 on the weights. The algorithm is described

in Algorithm 2, where WASSERSTEIN is a sub-routine that computes the Wasserstein loss and its
subgradient via the dual solution as described in Algorithm 1. We always run the gradient descent
for a fixed number of 100,000 iterations for training.

Algorithm 2 SGD Learning of Linear Logistic Model with Wasserstein Loss

Init θ1 randomly.
for t = 1, . . . , T do

Sample mini-batch Dt = (x1, y1), . . . , (xn, yn) from the training set.
Compute Wasserstein subgradient ∂W p

p /∂hθ|θt ← WASSERSTEIN(Dt, hθt(·)).
Compute parameter subgradient ∂W p

p /∂θ|θt = (∂hθ/∂θ)(∂W
p
p /∂hθ)|θt

Update parameter θt+1 ← θt − ηt∂W p
p /∂θ|θt

end for

Note that the same training algorithm can easily be extended from training a linear logistic regres-
sion model to a multi-layer neural network model, by cascading the chain-rule in the subgradient
computation.

E Empirical study

E.1 Noisy label example

We simulate the phenomenon of label noise arising from confusion of semantically similar classes
as follows. Consider a multiclass classification problem, in which the labels correspond to the
vertices on a D × D lattice on the 2D plane. The Euclidean distance in R2 is used to measure the
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(a) Noise level 0.1 (b) Noise level 0.5

Figure 8: Illustration of training samples on a 3x3 lattice with different noise levels.

semantic similarity between labels. The observations for each category are samples from an isotropic
Gaussian distribution centered at the corresponding vertex. Given a noise level t, we choose with
probability t to flip the label for each training sample to one of the neighboring categories8, chosen
uniformly at random. Figure 8 shows the training set for a 3×3 lattice with noise levels t = 0.1 and
t = 0.5, respectively.

Figure 2 is generated as follows. We repeat 10 times for noise levels t = 0.1, 0.2, . . . , 0.9 and
D = 3, 4, . . . , 7. We train a multiclass linear logistic regression classifier (as described in section D
of the Appendix) using either the standard KL-divergence loss9 or the proposed Wasserstein loss10.
The performance is measured by the mean Euclidean distance in the plane between the predicted
class and the true class, on the test set. Figure 2 compares the performance of the two loss functions.

E.2 Full figure for the MNIST example

The full version of Figure 4 from Section 6.1 is shown in Figure 9.

E.3 Details of the Flickr tag prediction experiment

From the tags in the Yahoo Flickr Creative Commons dataset, we filtered out those not occurring
in the WordNet11 database, as well those whose dominant lexical category was ”noun.location” or
”noun.time.” We also filtered out by hand nouns referring to geographical location or nationality,
proper nouns, numbers, photography-specific vocabulary, and several words not generally descrip-
tive of visual content (such as ”annual” and ”demo”). From the remainder, the 1000 most frequently
occurring tags were used.

We list some of the 1000 selected tags here. The 50 most frequently occurring tags: travel, square,
wedding, art, flower, music, nature, party, beach, family, people, food, tree, summer, water, concert,
winter, sky, snow, street, portrait, architecture, car, live, trip, friend, cat, sign, garden, mountain,
bird, sport, light, museum, animal, rock, show, spring, dog, film, blue, green, road, girl, event, red,

8Connected vertices on the lattice are considered neighbors, and the Euclidean distance between neighbors
is set to 1.

9This corresponds to maximum likelihood estimation of the logistic regression model.
10In this special case, this corresponds to weighted maximum likelihood estimation, c.f. Section C.
11http://wordnet.princeton.edu
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(a) Posterior prediction for images of digit 0.
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(b) Posterior prediction for images of digit 4.

Figure 9: Each curve is the predicted probability for a target digit from models trained with different
p values for the ground metric.

fun, building, new, cloud. . . . and the 50 least frequent tags: arboretum, chick, sightseeing, vineyard,
animalia, burlesque, key, flat, whale, swiss, giraffe, floor, peak, contemporary, scooter, society, actor,
tomb, fabric, gala, coral, sleeping, lizard, performer, album, body, crew, bathroom, bed, cricket,
piano, base, poetry, master, renovation, step, ghost, freight, champion, cartoon, jumping, crochet,
gaming, shooting, animation, carving, rocket, infant, drift, hope.

The complete features and labels can also be downloaded from the project website12. We train a
multiclass linear logistic regression model with a linear combination of the Wasserstein loss and
the KL divergence-based loss. The Wasserstein loss between the prediction and the normalized
groundtruth is computed as described in Algorithm 1, using 10 iterations of the Sinkhorn-Knopp
algorithm. Based on inspection of the ground metric matrix, we use p-norm with p = 13, and set
λ = 50. This ensures that the matrix K is reasonably sparse, enforcing semantic smoothness only in
each local neighborhood. Stochastic gradient descent with a mini-batch size of 100, and momentum
0.7 is run for 100,000 iterations to optimize the objective function on the training set. The baseline
is trained under the same setting, using only the KL loss function.

To create the dataset with reduced redundancy, for each image in the training set, we compute the
pairwise semantic distance for the groundtruth tags, and cluster them into “equivalent” tag-sets with
a threshold of semantic distance 1.3. Within each tag-set, one random tag is selected.

Figure 10 shows more test images and predictions randomly picked from the test set.

12http://cbcl.mit.edu/wasserstein/
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(a) Flickr user tags: zoo, run,
mark; our proposals: running,
summer, fun; baseline proposals:
running, country, lake.

(b) Flickr user tags: travel, ar-
chitecture, tourism; our proposals:
sky, roof, building; baseline pro-
posals: art, sky, beach.

(c) Flickr user tags: spring, race,
training; our proposals: road, bike,
trail; baseline proposals: dog,
surf, bike.

(d) Flickr user tags: family, trip, house; our propos-
als: family, girl, green; baseline proposals: woman,
tree, family.

(e) Flickr user tags: education, weather, cow, agricul-
ture; our proposals: girl, people, animal, play; base-
line proposals: concert, statue, pretty, girl.

(f) Flickr user tags: garden, table, gardening; our
proposals: garden, spring, plant; baseline proposals:
garden, decoration, plant.

(g) Flickr user tags: nature, bird, rescue; our propos-
als: bird, nature, wildlife; baseline proposals: ature,
bird, baby.

Figure 10: Examples of images in the Flickr dataset. We show the groundtruth tags and as well as
tags proposed by our algorithm and baseline.
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