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Motivation: Seismic Survey
Seismic surveys are very important for 
discovering underground structures 
before deciding where to drill wells.

● Shock waves are generated (usually 
at many different places)

● The reflective waves from 
underground layers are recorded in 
an array of sensors
○ The time-series signals are 

called (raw) seismic traces
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Motivation: Seismic Migration
Seismic migration uses an iterative 
procedure to recover the underground 
layerwise structure (seismic images).
● An initial prior velocity model from 

geologists is needed.
● Human intervention is needed during 

each iteration of refinement, to adjust 
the estimated velocity model to be more 
plausible/consistent with known 
geology, geophysics, etc.

● The whole procedure can take months 
to complete.
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Automatic Geophysical Feature Detection

Can we bypass the costly migration 
step, and detect interesting geophysical 

features directly from the data?
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Detecting Potential Traps of Oil/Gas

https://en.wikipedia.org/wiki/Structural_trap

Common structural traps 
include anticlinal trap, fault 
trap, and salt dome trap.

These traps block the upward 
migration of hydrocarbons and 
can lead to the formation of a 
petroleum reservoir.
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Current Goal: Fault Detection

From raw seismic traces, discover (classification) and locate (structured 
prediction) faults in the underground structure, without running migration.
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Machine Learning based Fault Detection

● Cast fault-detection as a machine learning problem
● Training data

○ Human labeled faults, acquired using migrated seismic 
images, along with corresponding raw seismic traces.

○ Synthetic data
■ Generate random velocity models.
■ Simulate seismic data for these models, using a finite 

difference approximation to the acoustic wave 
equations. 8



Workflow Overview

velocity model (latent, 
known only during 
data generation)

seismic traces

wave-equation simulation

Fault location (ground-
truth)

Learn a model to predict 
location of a fault from 

seismic traces.
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Difference from Detection in Computer Vision

Unknown correspondence between input 
and output domain
● CV: pixel ⇔ pixel
● Fault detection

○ Input: Time-by-Sensor (1000x10)
○ Output: Space-by-space

(e.g. 100x100)
○ Correspondence depends

on unknown velocity model
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Problem Formulation
A grid of binary fault PRESENT/NOT regions

Velocity model (unknown even 
during training)

Label (fault) representation, 2D 
“pixel” map

Learning to predict a binary bit 
map - each pixel is “on” if a 
fault crosses the 
corresponding spatial region.

Similar to semantic 
segmentation in Computer 
Vision, but no easy pixel 
correspondence between input 
and output.
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Wasserstein Distance

image source: http://remi.flamary.com/biblio/courty2014domain.pdf

Total cost of the optimal transport 
plan from the source (prediction) 
distribution to the target (ground 
truth) distribution. A.k.a. Earth 
Mover’s Distance.

Transport cost computed with 
respect to an underlying ground 
metric. In contrast, standard 
divergence-based or L^p distance, 
or hamming distance ignore the 
ground metric.
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Wasserstein Distance
Primal LP

Dual LP
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Learning with Wasserstein Loss

● Non-decomposable loss, penalize mis-predictions 
that are “far away” from groundtruth.

● Dual formulation: gradient given by the dual 
solution, back-propagate into model parameters via 
chain-rule.

● Fast computation: Sinkhorn iteration [MC13] or 
other matrix scaling algorithms [FZMAP15].
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Empirical Performance

15



Visualization
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Visualization
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Visualization
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Conclusion

● Automatic geophysical feature detection, directly 
from seismic data, is a groundbreaking and cost-
reducing approach.

● Can be formulated as a structured output 
prediction problem, but unlike many standard 
structured prediction problems, there’s no direct 
input-output mapping.

● Preliminary experiments show promising results.
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Outlook
● More realistic velocity models

○ Partial, 3D models, salt domes, 
real data

● More advanced structured prediction 
algorithms
○ High-order priors: faults tend to 

be “linear” structures
● Prediction of other geophysical 

features
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Thank you!

Chiyuan Zhang Charlie Frogner Tomaso Poggio Mauricio Araya Detlef Hohl
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